Evaluación de pronóstico de una red neuronal sobre el PIB en Colombia

Número: 
575
Publicado: 
Clasificación JEL: 
C45, C53, E17, E23
Palabras clave: 
Red neuronal artificial, No linealidad, PIB, Rolling de pronóstico

Lo más reciente

Andrea Sofía Otero-Cortés, Karina Acosta, Luis E. Arango, Danilo Aristizábal, Oscar Iván Ávila-Montealegre, Oscar Becerra, Cristina Fernández, Luz Adriana Flórez, Luis Armando Galvis-Aponte, Anderson Grajales, Catalina Granda, Franz Alonso Hamann-Salcedo, Juliana Jaramillo-Echeverri, Carlos Medina, Jesús Enrique Morales-Piñero, Alejandra Morales, Leonardo Fabio Morales, Juan José Ospina-Tejeiro, Christian Manuel Posso-Suárez, José Pulido, Mario Andrés Ramos-Veloza, Alejandro Sarasti-Sierra
Ana María Iregui-Bohórquez, Ligia Alba Melo-Becerra, María Teresa Ramírez-Giraldo, Jorge Leonardo Rodríguez-Arenas

Las redes neuronales artificiales han mostrado ser modelos robustos para dar cuenta del comportamiento de diferentes variables. En el presente trabajo se emplean para modelar la relación no lineal del crecimiento del PIB. Tres modelos son considerados: dos autoregresivos (especificación lineal y no lineal) y una red neuronal que usa la tasa de interés. Evaluando el desempeño de los modelos dentro y fuera de muestra, los pronósticos realizados por las redes neuronales artificiales superan ampliamente a los modelos lineales, siendo esta evidencia de relaciones asimétricas en el comportamiento del PIB en Colombia.