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Abstract

This paper revisits the conditions under which search models generate
balanced growth paths (BGPs)—equilibria where unemployment, vacan-
cies, and job flows remain stable even as search frictions decline. Martellini
and Menzio (2020) claim that such paths exist only when matches are “in-
spection goods” and match quality follows a Pareto distribution. We show
that these conditions are sufficient but not necessary. Their implementa-
tion imposes a multiplicative scaling of match quality, forcing the reser-
vation quality to grow at a constant, strictly positive rate. This assump-
tion mechanically ties declining frictions to long-term growth and yields
counterfactual implications of eliminating search frictions—persistent un-
employment and infinite welfare gains. Relaxing this restriction, balanced
growth can arise under alternative forms of scaling, such as additive trans-
formations that restore stationarity without Pareto tails or inspection. We
further show that biased technological progress, when vacancies and un-
employed workers are complementary inputs, also generates well-behaved
BGPs with finite welfare gains and vanishing unemployment as search
frictions disappear.
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”If search frictions in the labor market have diminished over the
last 90 years, why do we not see a secular inward shift of the Bev-
eridge curve, a secular negative trend in the unemployment rate, and
a secular rise in the UE rate?... We seek a balanced growth path
(BGP) for this economy, that is, an equilibrium along which unem-
ployment, vacancies, UE, and EU rates are constant over time... A
BGP exist iff (a) the quality of a firm-worker match is a sample from
a Pareto distribution with some tail coefficient... and (b) the work-
ers’ benefit from unemployment and the firms’ cost of maintaining
a vacancy grow at the same rate as average productivity. The as-
sumption that matches are inspection goods could be considered the
third condition for the existence of a BGP.” (Martellini and Menzio,
2020, pp. 4392).

1 Introduction

Despite dramatic improvements in job-search technology over the past cen-
tury—from newspaper classifieds to online platforms to algorithmic match-
ing—aggregate labor market outcomes have remained remarkably stable. Un-
employment rates show no secular decline, the Beveridge curve has not shifted
inward over the long run, and job-finding and separation rates appear station-
ary. This apparent disconnect between technological progress and stable labor-
market outcomes poses a fundamental puzzle for macroeconomic theory: how
can declining search frictions coexist with stationary employment dynamics?

Martellini and Menzio (2020) (hereafter MM) offer an influential answer. In
the spirit of King, Plosser, and Rebelo (1988), they seek necessary and sufficient
conditions for balanced growth in search-theoretic models of unemployment.
Their solution is strikingly sharp: a balanced growth path exists if and only if
firm–worker matches are “inspection goods” and match quality follows a Pareto
distribution.1 Under these assumptions, the long tail of the Pareto distribu-
tion induces increasingly selective matching that offsets the effects of declining
frictions, thereby preserving stationarity while generating long-run growth.

This paper revisits and challenges that characterization. We show that MM’s
conditions are sufficient but not necessary. The key lies in how they operational-
ize the notion of balanced growth. By definition, a BGP refers to observable ag-
gregates—unemployment, vacancies, and job flows—that remain constant over
time. Ensuring this stationarity, however, requires the underlying distribution of
match qualities—an unobservable variable—to evolve in a stationary way once
properly detrended. MM achieve this by imposing a specific form of detrending:
multiplicative scaling of match quality, which forces the reservation quality to
grow at a constant and strictly positive rate. This choice enforces proportional
(scale-invariant) adjustment in match quality and mechanically links declining

1Inspection means that when a worker and a vacancy meet, the match-specific productivity
is revealed and the parties decide whether to form an employment relationship.
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search frictions to long-term growth. Yet multiplicative detrending is not im-
plied by the BGP definition itself. Once detrending is treated more generally,
the Pareto distribution requirement is no longer necessary for balanced growth.

We demonstrate that alternative time transformations can restore stationar-
ity without invoking Pareto tails. Under exponential sampling of match quality,
improvements in search efficiency cause the reservation quality to drift linearly
over time, rather than scale proportionally as in the Pareto case. This additive
transformation of time ensures that the distribution of accepted matches remains
stationary even as search efficiency improves exponentially. In equilibrium, self-
selection adjusts just enough to offset the destabilizing effect of improved match-
ing—restoring stationarity but without generating long-run growth.

The restrictive structure implied by multiplicative scaling also generates
counterfactual implications. In the MM setup, unemployment persists even
when posting vacancies is costless, and the welfare gains from eliminating search
frictions are infinite. In contrast, the canonical Diamond–Mortensen–Pissarides
(DMP) framework predicts that unemployment vanishes as posting costs fall
and that welfare gains are finite, bounded by the forgone output of unem-
ployed workers. Under exponential sampling, one core DMP prediction is re-
stored—unemployment vanishes as posting costs fall—but, as in the Pareto in-
spection case, the welfare gains from eliminating frictions remain unbounded be-
cause ever-easier matching induces ever-higher reservation quality when match
quality is unbounded above.

Balanced growth can also arise outside the inspection framework. When
technological progress is input-biased and vacancies and unemployed workers
are complementary inputs in the matching function, the economy converges to
a well-behaved BGP with stationary unemployment, tightness, and job-finding
rates. In this setting, unemployment vanishes as frictions disappear only if tech-
nological progress is worker-augmenting. Unlike inspection models, the welfare
gains from eliminating frictions are finite. However, the resulting BGP is nec-
essarily inefficient: the market equilibrium supports a stationary path with de-
clining frictions, but the planner’s allocation does not. This inefficiency arises
because the bargaining weight in the market equilibrium is fixed, whereas the
planner’s shadow bargaining power varies with tightness, preventing the Hosios
condition (Hosios, 1990) from being satisfied. Thus, while the biased-technology
DMP framework restores the core qualitative properties of DMP models and
avoids the implausible welfare implications of inspection, it reveals an intrinsic
inefficiency between market and planner allocations.

Together, these results show that MM’s characterization overstates the con-
ditions required for balanced growth. Pareto distributions and inspection are
sufficient under a particular (multiplicative) time transformation, but not nec-
essary once alternative transformations are considered. In this article, we focus
on the two most transparent cases—multiplicative and additive detrending—but
the logic extends to more general transformations of time that can also restore
stationarity. Our analysis clarifies the logical structure of balanced growth in
search models and provides a broader foundation for understanding how declin-
ing frictions interact with stationarity and growth.
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The rest of the paper proceeds as follows. Section 2 revisits MM’s inspection
model. Section 3 shows that with exponential sampling, a BGP exists where
unemployment and vacancies remain stationary but declining frictions do not
generate growth. Section 4 examines a DMP model with homogeneous workers
and biased technological progress in the matching function, showing that a
well-behaved BGP exists when unemployment and vacancies are complementary
inputs. Section 5 concludes.

2 Overview

Because the paper is technically detailed, it is useful to begin with an overview of
the main ideas. MM analyze a two-stage matching process in the labor market.
In the first stage, a worker meets a vacancy with arrival rate Atp(θt), where
θt is labor market tightness defined as vacancies over unemployed workers and
At is a technological parameter growing exogenously at the constant rate gA:
At = A0e

gAt. MM refer to this as the meeting rate. If a meeting occurs, the
process moves to the second stage, where the productivity of the match is drawn
from a distribution F (z). The unemployment-employment (UE) rate is thus

hue,t = Atp(θt) (1− F (Rt)) , (1)

where Rt is the reservation threshold of match quality.
MM seek a balanced growth path (BGP) in which both hue and θ remain

constant, consistent with the empirical stationarity of unemployment and va-
cancies. Since the matching technology improves over time, the reservation
threshold must rise accordingly to satisfy the equation at all times. Differenti-
ating yields

gA =
F ′(Rt)

1− F (Rt)

·
Rt, ∀t, (2)

and under the assumption that Rt grows at a constant rate, MM obtain their key
condition (equation (10)), which implies that F must be Pareto. They further
show that Rt indeed grows at a constant rate as an equilibrium outcome, and
that increasing selectivity adds to economic growth.

Our paper builds on three observations that qualify and extend this frame-
work.

1. Pareto not necessary. Their equation (10) is a special case of the more
general condition, equation (2). While Pareto sampling produces a constant UE
transition rate, other distributions, such as exponential, can do so as well once

the adjustment of reservation quality is specified differently. For instance, if
·
Rt

is constant (rather than
·
R/Rt), the reservation quality increases linearly rather

than exponentially over time, and the solution to the differential equation (2)
is exponential rather than Pareto. With exponential sampling, unemployment,
tightness, and transition rates remain stationary, but output growth slows down
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and eventually stops. Thus, declining search frictions do not drive long-run
growth, and stationarity does not uniquely require a Pareto distribution.

2. Inspection models have counterfactual implications. Introducing
inspection fundamentally changes the standard DMP logic. In the canonical
model, eliminating search frictions (making vacancies costless) drives unemploy-
ment to zero and yields finite welfare gains. In inspection models, by contrast,
costless posting pushes tightness and reservation productivity to infinity. With
Pareto sampling, both forces cancel each other out and unemployment persists
even under costless posting. Moreover, the welfare gains from eliminating fric-
tions become infinite, an implausible prediction.

3. Technological progress may be biased. MM assume Hicks-neutral
progress, with At scaling the entire meeting rate. A more general formulation
is

hue,t = p(θt, At)(1− F (Rt)),

where At affects the productivity of unemployment and vacancies differently.
When these inputs are complements, biased progress in one input eventually
faces diminishing returns: improvements in At no longer raise the meeting rate
without bound, and the need for ever-rising reservation thresholds disappears.
In the limit, search efficiency gains no longer fuel growth, undermining MM’s
claim that declining frictions necessarily generate long-run expansion.

3 Inspection

This section considers variants of the MM inspection model, with the aim of
characterizing the necessary and sufficient conditions for the existence of a suit-
able balanced growth path. While the original framework analyzes a decen-
tralized equilibrium, we study the corresponding social planner’s allocation and
show that the two coincide if the Hosios condition holds and the matching func-
tion is Cobb-Douglas. Our formulation generalizes the baseline model to incor-
porate both endogenous and exogenous job destruction, nesting the canonical
case without declining search frictions as a special case.

3.1 Environment

The economy is populated by a continuum of workers of measure one and a
continuum of firms of positive measure. At each date t, each worker is either
unemployed, ut, or employed in a job with firm-specific productivity z. Let nt(z)
denote the measure of workers at time t employed in jobs with productivity z.
Employed workers with productivity z produce ytz, where yt = y0e

gyt is an
aggregate productivity term common to all jobs and grows at rate gy ≥ 0. Jobs
are destroyed at an exogenously rate δ ≥ 0, or endogenously when either the
worker or the firm chooses to separate. In the planner’s allocation, endogenous
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separations are characterized by a productivity cutoff Rt: matches with z < Rt

are terminated, while those with z ≥ Rt continue. Unemployed workers produce
bt.

Unemployed workers can be assigned to jobs across different productivity
levels, but doing so requires vacancy creation. Let vt denote vacancies posted
at cost kt units of output per vacancy per period. These vacancies generate
AtM(ut, vt) random matches between unemployed workers and vacant jobs,
where At measures search efficiency, and M is a constant-returns-to-scale (CRS)
matching function. M is increasing in each argument, concave, and satisfies the
Inada conditions. Let M1 and M2 denote the corresponding partial derivatives
with respect to the first and second arguments, respectively.

When a worker and firm meet, a match productivity z is drawn from a
cumulative distribution F (z) with density f(z) and support [zl,∞). The law of
motion of nt(z) is:

·
nt(z) = AtM(ut, vt)f(z)− δnt(z) for z ≥ Rt and t ≥ 0.

3.2 Planner’s Problem

Given an initial distribution of employment, [n0(z)]
∞
0 , the planner solves the

following problem:

max
{vt,ut,Rt,nt}∞

t=0

∫ ∞

t=0

e−rt

[∫
Rt

ytznt(z)dz + utbt − ktvt

]
dt subject to:

·
nt(z) = AtM(ut, vt)f(z)− δnt(z) for z ≥ Rt for t ≥ 0, and (3)

ut = 1−
∫ ∞

Rt

nt(z)dz, Rt ≥ z
l
for t ≥ 0. (4)

The planner selects vacancies, unemployment, and a productivity cutoff to
maximize the discounted present value of net output at discount rate r, subject
to the law of motion for employment across job productivities and the labor
market resource constraint.

To connect this formulation with the MM decentralized equilibrium, it is
useful to define the meeting rates implied by the matching function. An un-
employed worker meets a vacancy at rate mt = Atp (θt) where p (θ) ≡ M(1, θ)
and θt = vt/ut is labor market tightness. Symmetrically, a vacancy meets an
unemployed worker at rate st = Atq (θt) , where q (θ) = p (θ) /θ.

3.3 Optimality Conditions

Let e−rtλt(z) and e−rtηt be the Lagrange multipliers associated with equa-
tion (3) and equation (4), respectively, for t ≥ 0. The conditions associated
with the optimal choices of vt, ut, Rt, and nt(z) are:

kt = AtM2 (1, θ)

∫
Rt

λt(z)f(z)dz = Atqt (1− µt)

∫
Rt

λt(z)f(z)dz, (5)
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ηt = bt +AtM1 (1, θ)

∫
Rt

λt(z)f(z)dz = bt +Atptµt

∫
Rt

λt(z)f(z)dz, (6)

ηt = ytRt, and (7)

ytz − ηt − δλt(z) = rλt(z)−
·
λt(z) for z ≥ Rt, (8)

where µt is the elasticity of matches with respect to unemployment.2

Equation (5) states that the optimal mass of vacancies equates the marginal
cost kt to the marginal benefit: the additional matches created by an extra
vacancy, At

∂Mt

∂vt
= Atqt (1− µt), multiplied by the expected shadow value of a

filled job.
Equation (6) requires that the shadow flow value of an unemployed worker,

ηt, equals the flow of output while unemployed, bt, plus the additional matches
generated by an unemployed worker, At

∂Mt

∂ut
= Atptµt, times expected shadow

value of a match.
Equation (7) implies that the optimal reservation productivity Rt is such

that the production of the marginal worker, ytRt, equals the shadow flow value
of unemployment, ηt. Finally, equation (8) characterizes the shadow value λt(z)
of a filled job.

We now rewrite these expressions in a form that will be useful later. Com-
bining equation (6) and equation (7) yields:

ytRt − bt = ptµt

∫
Rt

λt(z)f(z)dz.

Substituting equation (5) into this expression leads to our first key relationship:

ytRt − bt
kt

=
ptµt

qt (1− µt)
=

µ (θt)

1− µ (θt)
θt. (9)

Next, substituting equation (7) into equation (8) gives:

(r + δ)λt(z) = ytz − ytRt +
·
λt(z) for z ≥ Rt. (10)

This is the familiar value function equation in which λt(z) denotes the social
value of a match. Solving this differential equation (see Appendix) yields:

λt(z)− e−(r+δ)dλt+d(z) =

∫ d

0

e−(r+δ)τ (yt+τz − yt+τRt+τ ) dτ. (11)

The transversality condition e−(r+δ)dλt+d = 0 must hold. If d is finite, this
implies λt+d = 0 or, from equation (10),

z = Rt+dt(z). (12)

2We assume that parameters are such that optimal solutions are interior. We discuss some
of these restrictions below in the context of specific sampling distributions, F .
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Equation (12) defines dt(z), the optimal longevity of a match with productivity
z at time t, absent an exogenous destruction shock. Substituting this into
equation (11) gives:

λt (z) =

∫ d(z,t)

0

e−(r+δ)τ (yt+τz − yt+τRt+τ ) dτ. (13)

3.4 Aggregates

The measure of aggregate employment with match quality below zt is:

Nt (zt) ≡
∫ zt

Rt

nt(x)dx. (14)

Total employment is then:

Nt = Nt (∞) = 1− u.

From equation (3) and equation (14), we obtain:

·
N t (zt) = nt(zt)

·
zt − nt(Rt)

·
Rt +

∫ zt

Rt

·
nt(x)dx (15)

= nt(zt)
·
zt − nt(Rt)

·
Rt +

∫ zt

Rt

[AtM(ut, vt)f(x)− δnt(x)] dx

= nt(zt)
·
zt − nt(Rt)

·
Rt + utAtpt (F (zt)− F (Rt))− δNt (zt) .

This expression decomposes employment below zt into net inflows from new
matches and outflows from job destructions.

Similarly, the law of motion for total employment can be expressed as:

·
N t =

∫ ∞

Rt

·
nt(z)dz − nt(Rt)

·
Rt (16)

= utAtpt (1− F (Rt))− δNt − nt(Rt)
·
Rt.

Here, total employment depends on the inflow from unemployed workers matched
to jobs above Rt and the outflow from job destruction. Finally, define the cu-
mulative distribution of match qualities as:

Gt(z) ≡
Nt(z)

Nt
(17)

This is the fraction of employed workers in matches with productivity below z.

3.5 Balanced Growth

3.5.1 Definition

The definition of a balanced growth path is central, as it imposes additional
restrictions on endogenous variables, thereby freeing up equations that can be
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used to pin down the exogenous forces—particularly the dynamics of kt, bt, and
the function F — needed to sustain the path. We consider two definitions,
denoted by BPG and SBGP, both employed by MM.

Definition: A Balanced Growth Path (BGP) is an initial state, G0(z), and
associated efficient allocation such that unemployment, tightness, employment-
to-unemployment (EU), and unemployment-to-employment (UE) rates are con-
stant over time while aggregate productivity and search technologies improve
at constant rates, gy ≥ 0 and gA ≥ 0. A Scaled Balanced Growth Path (SBGP)
is a BGP in which the distribution of employed workers across match qualities,
Gt(z), shifts at a constant rate:

Gt(ze
gzt) = G0(z) for all z ≥ R0.

By construction, an SBGP is a special case of a BGP—one that imposes a
specific proportional (multiplicative) transformation on the endogenous distri-
bution Gt. MM describe the broader BGP concept in the abstract and introduc-
tion of their paper, but adopt the more restrictive SBGP definition in proving
their main result, Theorem 1. The BGP definition, in contrast, places no re-
striction on the evolution of Gt beyond requiring that aggregate labor-market
variables remain stationary over time. This broader interpretation is fully con-
sistent with MM’s stated objective in their abstract: “We seek conditions for
the existence of a balanced growth path (BGP), where unemployment, vacancy,
and worker’s transition rates remain constant in the face of improvements in
the production and search technologies.”

The restriction MM impose on Gt is inspired by related work (e.g., Perla and
Tonetti, 2014; Lucas and Moll, 2014; Buera and Oberfield, 2020; Benhabib et al.,
2021), which adopts a similar assumption for models of endogenous growth. In
that context, the restriction is natural and purposeful as the restriction generates
endogenous growth. In the present context—where the aim is to explain labor
market statistics—it inadvertently introduces endogenous growth, even though
it is not required for the stated objective. One implication of this definition is
that the reservation productivity, the lower bound of the support, must grow at
the constant rate gz along a SBGP:

Rt = R0e
gzt.

The BGP definition does not impose this structure on the reservation produc-
tivity, and in fact our counter-example instead requires Rt = R0 + ϕ× t where
ϕ > 0 is a constant.

Finally, the BGP definition permits gA ≥ 0, whereas MM require gA > 0.
Their restriction rules out the canonical benchmark of stable search frictions
(constant A). The reason is that in their framework, when A is constant, the
distribution F of match quality cannot be identified. Moreover, because tech-
nological progress in search is the sole source of job destruction in MM, setting
gA = 0 renders employment an absorbing state. By contrast, our framework
introduces exogenous job destruction (δ > 0), allowing the case gA = 0 to be
well defined and to place no restrictions on F .
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3.6 BGP and SBGP System of Equations

Along a BGP, the following versions of equations (5), (9), (12), (13), (15), and
(16) must hold. First, the first order condition with respect to vacancies becomes

kt = AtM2 (1, θ)

∫
Rt

λt(z)f(z)dz, (18)

while the reservation condition reads

ytRt − bt
kt

=
M1 (1, θ)

M2 (1, θ)
=

µ (θ)

1− µ (θ)
θ. (19)

Match longevity is defined by

z = Rt+dt(z), (20)

and the shadow value of a filled job satisfies

λt (z) =

∫ d(z)

0

e−(r+δ)τ (yt+τz − yt+τRt+τ ) dτ. (21)

The dynamics of employment by productivity are given by

nt(zt)
·
zt + uAtp (θ) (F (zt)− F (Rt)) = nt(Rt)

·
Rt + δNt (zt) . (22)

In steady state, inflows into unemployment must equal outflows, implying

uhue = (1− u)heu, (23)

where the job-finding and job-destruction rates are given by:

hue ≡ Atp (θ) (1− F (Rt)) , (24)

heu ≡ δ +
nt(Rt)

N

·
Rt, (25)

with total employment N = 1− u.
Given parameters, these conditions can be used to solve for dt(z), Rt, θ,

λt (z) , nt(z), hue, and heu. Equation (22) corresponds to equation (15) when
·
N t (zt) = 0, and equation (23) corresponds to equation (16) when

·
N t = 0. Fi-

nally, equation (24) and equation (25) provide explicit definitions for the steady-
state job-finding and job-destruction rates.

As in MM, it is convenient to work with the distribution Gt defined in
equation (17). To derive the implied restrictions on G, substitute equations
(23)-(24) into equation (22):

nt(zt)
·
zt + uAtp(θ) (F (zt)− F (Rt)) = heuN − δN + δNt (zt)

= uhue + δ (Nt (zt)−N)

= uAtp(θ) (1− F (Rt)) + δ (Nt (zt)−N) .
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Simplifying yields:

nt(zt)
·
zt = uAtp(θ) (1− F (zt)) + δ (1− u)

(
Nt (zt)

N
− 1

)
.

From equation (17) we have that (1− u)G′
t(z) = nt(z). Substituting this into

the previous expression gives:

(1− u)
(
G′

t(zt)
·
zt + δ (1−Gt(z))

)
= uAtp(θ) (1− F (zt)) , (26)

which provides the implied restriction on the evolution of the endogenous em-
ployment distribution. Moreover, the job destruction rate (25) becomes:

heu = δ +G′
t(Rt)

·
Rt. (27)

These last two equations can replace equation (22) and equation (25) in the
definition of BGP. On a Scaled Balanced Growth Path (SBGP), productivity
grows at a constant rate żt/zt = gz. Substituting this into equation (26) and
equation (27) yields

(1− u) (G′
t(zt)ztgz + δ (1−Gt(z))) = uAtp(θ) (1− F (zt)) , (28)

heu = δ +G′
t(Rt)Rtgz. (29)

These two conditions replace equation (26) and equation (27) in the definition
of a SBGP.

Finally, average match quality satisfies

Zt =

∫
Rt

zG′
t(z)dz, (30)

which links the distribution of employed matches to aggregate productivity.
Decentralization and efficiency. Simple inspection reveals the connec-

tion between the social planner’s solution and the decentralized equilibrium of
MM. Our system of equations defining a SBGP is identical to their system if
δ = 0 (i.e., all job separations are endogenously determined by the reservation
rule) and the matching elasticity µ (θ) is substituted by a constant workers’
bargaining power, γ. In other words, when the Hosios condition holds and the
matching function is Cobb-Douglas, MM’s decentralized equilibrium is efficient.

3.7 Characterization

We now present three main results. The first two parallel MM’s Lemma 1 and
Theorem 1, which establish necessary and sufficient conditions for the existence
of a SBGP. Our results are novel in that they pertain to efficient rather than
decentralized equilibrium allocations and allow for both endogenous and exoge-
nous separations, whereas MM consider only the endogenous separations.
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The third result is a counterexample: a BGP that is not a SBGP, where
the distribution F is exponential rather than Pareto, yet labor market statistics
remain constant over time. This example demonstrates that search models need
not be constrained by the narrow conditions of MM’s Lemma 1 and Theorem
1.

Lemma 1 (Necessary conditions for a SBGP). Let gy ≥ 0 and gA > 0 be
arbitrary growth rates for the production and search technologies.
1. A SBGP may exist only if (a) the distribution F is Pareto with an
arbitrary coefficient α; (b) the growth rate of the vacancy cost, gk, and
the growth rate of the unemployment benefit, gb, are equal to gy+gz; and
(c) the discount rate r is greater than gy + gz.
2. In any SBGP, the growth rate gz of the distribution Gt is equal to
gA/α.

The proof of Lemma 1 follows MM closely and is therefore omitted. The need
for a Pareto distribution follows from our discussion in Section 2. Intuitively,
a Pareto distribution is required to ensure scale invariance of match quality,
so that the reservation cutoff can grow proportionally over time. Moreover,
equation (12) in MM, needed for the proof, is analogous to our equation (19),
except that our expression involves the endogenous elasticity µ (θ) rather than
the exogenous bargaining weight γ. But since θ is constant along a BGP, this
difference does not affect the proof of Lemma 1.

Assuming that the conditions of Lemma 1 are satisfied, the next step is to
show that a SBGP exists and is unique. This amounts to verifying that, under
those conditions, the system of equations defining a SBGP can be solved and
yields a unique set of functions and values for dt(z), Rt, θ, λt (z) , Gt(z), hue,
and heu. Following MM’s steps, this system can be reduced to two equations in
the two unknowns R0 and θ:

R0 = (A0M2 (1, θ) Φ1y0/k0)
1/(α−1)

, (31)

R0 =
b0
y0

+
M1 (1, θ)

M2 (1, θ)

k0
y0

, (32)

where

Φ1 =
zαl

(α− 1) ((α− 1) gz + (r + δ − gy))
. (33)

Given the assumed properties of M , this system has a unique solution. Equa-
tion (31) is a strictly decreasing function of θ, spanning from +∞ to 0, while
equation (32) is a strictly increasing function of θ, spanning from 0 to +∞.
By the intermediate value theorem, the two curves intersect at a unique θ,
which binds down a unique solution for R0 and θ. The solution for Rt is then
Rt = R0e

(gA/α)t. A unique solution for G0(z) can then be found.
Given that F is Pareto, equation (28) reads:

(1− u) (G′
t(z)zgz + δ (1−Gt(z))) = uAtp (θ)

(zl
z

)α
.
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This is a differential equation for Gt(z). A natural guess for the solution is
Gt(z) = 1−

(
Rt

z

)α
. Substituting this into the differential equation yields

(1− u)

(
Rt

z

)α

(αgz + δ) = uAtp (θ)
(zl
z

)α
.

This equation is satisfied if

(1− u) (αgz + δ) = uAtp (θ)
(zl
R

)α
= uAtp (θ) (1− F (R)) = uhue,

or

u =
αgz + δ

αgz + δ + hue
=

gA + δ

gA + δ + hue
.

This condition is consistent with equation (23) and equation (29), together
with the guessed solution for Gt(z), thereby confirming its validity. Hence,
an efficient SBGP exists, is unique and—importantly—is continuous at gA =
0 if δ > 0. This continuity is possible because δ > 0 allows for exogenous
job destruction. By contrast, if δ = 0 and gA = 0, there would be no job
destruction along a SBGP making full employment an absorbing state. The
following Theorem collects these results.

Theorem 1 (Existence and properties of a SBGP). Let gA > 0, gy ≥ 0,
and δ > 0. An (interior) efficient SBGP exists if and only if (a) F is
Pareto with coefficient α > 1; (b) gb and gk satisfy gb = gy + gA/α and
gk = gy + gA/α; and (c) r > gy + gA/α.

If an (interior) efficient SBGP exists, it is unique, continuous at gA = 0,
and has the following properties:
(i) u, θ, hue, and heu are constant, with hue = A0p(θ) (1− F (R0)) , heu =
gA + δ;
(ii) Gt(ze

gzt) = G0(z) with gz = gA/α and G0(z) = 1−
(
R0

z

)α
; and

(iii) labor productivity grows at the rate gy + gA/α.

The theorem confirms MM’s findings for the planner. Under DMP decen-
tralization, efficient and market allocations generally differ, except when the
Hosios condition holds and the matching function is Cobb-Douglas. In contrast
to MM, our SBGP is continuous at gA = 0.

Theorem 1 includes condition (d), which is required to ensure that first-
order conditions are necessary. MM does not discuss the possibility of corner
solutions, but as we discuss in Section 3.8, corner solutions may arise if the
Pareto tail is too fat.

We now present the main result of this subsection: an example of a BGP
that is not an SBGP. As discussed in Section 2, when the sampling distribution
is exponential rather than Pareto, maintaining a constant UE rate requires the
reservation productivity to increase linearly over time rather than exponentially,
ensuring that declining search frictions do not contribute to long-run growth.
The limit of our BGP example is therefore an SBGP without growth. The

13



following proposition shows that this outcome arises, as a general equilibrium
result, when unemployment benefits rise linearly over time while the cost of
posting a vacancy remains constant.

Proposition 1 (BGP) Let y = 1, gA > 0, F (z) = 1 − e−λz, kt = k, and
bt = b+ (gA/λ) t. Then there exists a unique efficient BGP such that:
(i) u, θ, hue, and heu are constant, with hue = A0p(θ) (1− F (R0)) , heu =
gA + δ;
(ii) Rt = R0 + (gA/λ) t;
(iii) Gt(z + (gA/λ) t) = G0(z) = 1− e−λ(z−R0);
(iv) average productivity satisfies Zt = 1/λ+Rt. Hence

Żt

Zt
=

gA
1 + λR0 + gAt

−→ 0 as t → ∞.

Proof. Following MM’s steps, the system reduces to two equations in the two
unknowns R0 and θ. Equation (24) becomes

hue = A0e
gAtp (θ) e−λRt = A0p (θ) e

−λR0 .

From this expression, it follows that

Rt = R0 +
gA
λ
t. (34)

Substituting into equation (19) yields the first equation in two unknowns:

Rt − bt
k

=
R0 − b

k
=

M1 (1, θ)

M2 (1, θ)
. (35)

Next, using equation (34) in equation (20) gives d(z) = (z −Rt) / (gA/λ). The
appendix shows that ∫

Rt

λt(z)f(z)dz = Φ2e
−λRt , (36)

where Φ2 = 1
r+δ

1
λ

[
r+δ−gA

r+δ + 1
r+δ

g2
A

r+δ+gA

]
. Plugging this and equation (34) into

equation (18) gives the second equation:

k = Ate
−λRtM2 (1, θ) Φ2 = A0e

−λR0M2 (1, θ) Φ2. (37)

Equations (35) and (37) determine θ and R0. Given the assumed properties of
M , this system admits a unique solution. Now consider equation (26):

(1− u)
(
G′

t(z)
gA
λ

+ δ (1−Gt(z))
)
= uAtp (θ) e

−λz.

This is a differential equation for Gt(z). Given the exponential form on the
right-hand side, a natural conjecture is

Gt(z) = 1− e−λ(z−Rt).

14



Substituting yields

(1− u) e−λ(z−Rt) (gA + δ) = uAtp (θ) e
−λz.

This holds if and only if

(1− u) (gA + δ) = uAtp (θ) e
−λRt = uAtp (θ) (1− F (Rt)) = uhue,

or equivalently,

u =
gA + δ

gA + δ + hue
=

gA + δ

gA + δ +Atp (θ) e−λRt
,

which follows from equations (23), (24), (27), and the conjecture for G. Thus,
the conjecture is verified. Finally, average match quality—equal to average labor
productivity since y = 1— defined in equation (30) satisfies

Zt =
1

λ
+Rt.

Hence,
·
Zt

Zt
=

·
Rt

Zt
=

gA
1 + λR0 + gAt

→ 0.

Comparing Theorem 1 and Proposition 1, we find that if the sample dis-
tribution is Pareto, a SBGP requires both the cost of posting a vacancy and
unemployment compensation to rise exponentially over time. By contrast, if
the sample distribution is exponential, the cost of posting a vacancy can re-
main constant, while unemployment compensation needs to grow only linearly.
The underlying reason is that under an exponential distribution, small changes
in the reservation threshold have large effects on the probability of drawing a
high-quality match. Consequently, parameters do not need to adjust as much
to sustain a BGP.

In summary, MM imposes an unnecessary extra assumption. They assume
that in any BGP, the reservation productivity must grow at a constant rate.
Proposition (1) removes this assumption. While it is true that an increase in
reservation productivity is necessary to offset the persistent improvements in
search technology, this increase does not need to be exponential over time.

3.8 The Role of Search Frictions

We now turn to the implications of eliminating search frictions. In the canonical
DMP model, removing frictions—by making vacancy posting costless—drives
unemployment to zero. In the MM inspection framework, by contrast, unem-
ployment does not vanish: although jobs become easy to find, workers simulta-
neously become excessively selective, exactly offsetting the improved matching
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prospects. In our exponential benchmark, however, unemployment does vanish,
since self-selection is too weak to neutralize the ease of finding work.

The welfare predictions differ just as sharply. In the DMP model, the gains
from eliminating frictions are finite, bounded by the additional output that un-
employed workers could contribute. In both the MM model and our exponential
inspection variant, however, the welfare gains are unbounded. As matching be-
comes arbitrarily easy, it is optimal for workers to hold out for ever-better offers,
and since match quality is unbounded above, expected gains diverge. This im-
plausible implication highlights a core weakness of inspection frameworks. The
present section illustrates these weaknesses, while Section 4 develops an alter-
native mechanism that avoids them.

For this analysis, we adopt the canonical Cobb-Douglas (CD) matching func-
tion, M(v, u) = uγv1−γ , to facilitate comparison with MM’s formulas.

3.8.1 The Underlying Source of Unemployment

In the two models we are considering, the unemployment rate satisfies

u =
gA + δ

gA + δ + hue
, (38)

where hue satisfies equation (24). In this section, we are interested in the limit of
this expression as k → 0. In the DMP model, free vacancy posting would drive
vacancies, tightness, θ, workers’ matching probability, and the UE transition
probability, hue, to infinite, thus eliminating unemployment.

3.8.2 MM’s Model

In the MM model, the UE transition satisfies

hue ≡ A0p (θ) (1− F (R0)) = A0θ
1−γzαl R

−α
0 . (39)

In order to characterize hue, we need to characterize θ and R0.
Using the assumed matching function, equation (31) and equation (32) sim-

plify to:

R0 =

(
A0 (1− γ) Φ1

y0

k1−γ
0

)1/(α−1)

(θk0)
−γ/(α−1), and (40)

R0 =
b0
y0

+
γ

1− γ

θk0
y0

. (41)

Equation (40) depicts R0 as a decreasing function of θk0 while equation (41)
depicts R0 as an increasing function of θk0. A unique solution for R0 and θk0
exists. Moreover, as k0 decreases, the curve from equation (40) shifts upwards
and that from equation (41) remains unchanged, pushing the solution toward
higher R0 and θk0, but also higher θ. As k → 0 both R0 and θ diverge to ∞.
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For k sufficiently low, the constant term b0
y0

in equation (41) becomes negligible
so that

R0 ≈ γ

1− γ

θk0
y0

.

Using this and equation (40), closed form solution for R0 and θ can be found
as:

θk→0 = Ω1k
− α

α−(1−γ)

0 , and (42)

Rk→0 =
γ

1− γ

Ω1

y0
k
− 1−γ

α−(1−γ)

0 , (43)

where Ω1 =
[
1−γ
γ (A0 (1− γ) Φ1)

1/(α−1)
y
α/(α−1)
0

] 1
1+γ/(α−1)

. These solutions are

valid in the limit, but if b0 = 0, they are also valid for any k. Substituting
these solutions into equation (39), the solution for hue is obtained. The solution
then can be substituted into equation (38) to find unemployment. The following
proposition summarizes the main results.

Proposition 2 In a BGP with M(u, v) = uγv1−γ , and k → 0,

hue → h∗
ue = (α− 1)

(
α− 1

α
gA + r + δ − gy

)
/γ,

u∗ =
gA + δ

gA + δ + h∗
ue

> 0.

Proof. See Appendix.

Discussion. Unlike the DMP model, unemployment persists in MM’s model
even when posting vacancies is costless. Firms post infinitely many vacancies,
making matches certain, but workers become increasingly selective and wait for
the best possible draws. Consequently, unemployment remains strictly positive
and independent of level parameters such as A0, zl, or k. Moreover, unemploy-
ment decreases with the Pareto tail parameter: thinner tails induce workers to
accept jobs more readily. The key driver of long run unemployment in MM’s
model is the random nature of match quality. If α = ∞, so that match quality
is deterministically zl, then unemployment would fall to zero when k = 0.

3.8.3 BGP with Exponential Sample Distribution

The outcome changes when the sample distribution is exponential rather than
Pareto. Because the exponential distribution has much thinner tails, the se-
lection motive is too weak to sustain positive unemployment in the presence of
abundant job offers. As a result, unemployment vanishes once vacancies become
costless, as we show.

Under the exponential distribution and CD matching, the UE transition rate
is

hue = A0p (θ) e
−λR0 = A0θ

1−γe−λR0 .
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To determine hue, we solve for (R0, θ) using the efficient conditions (35) and
(37). Under CD matching, they become:

k = A0e
−λR0 (1− γ) θ−γΦ2, and (44)

θ =
1− γ

γ

R0 − b0
k

. (45)

Substituting equation (45) into equation (44) gives a single equation in R0:

LHS(R0) :=
e−λR0

(R0 − b0)
γ =

k1−γ

A0 (1− γ)
1−γ

γγΦ2

. (46)

Equation (46) admits a unique solution since LHS(b0) = ∞, LHS(∞) = 0, and
LHS′(R0) < 0. Moreover, as k → 0, R0 → ∞. Once R0 is determined, θ follows
from equation (45).

Rewriting equation (44),

k = A0e
−λR0 (1− γ) θ−γΦ2 = hue (1− γ) θ−1Φ2,

which implies, using equation (45),

hue =
kθ

(1− γ) Φ2
=

k 1−γ
γ

R0−b0
k

(1− γ) Φ2
=

R0 − b0
γΦ2

.

Thus the UE rate is increasing in the reservation quality R0. Since limk→0 R0 =
∞, it follows that hue → ∞. Consequently, unemployment converges to zero.

3.8.4 Welfare Cost of Search Frictions

We now highlight a problematic feature of inspection models: eliminating search
frictions by making vacancy posting costless leads to unbounded productivity
and infinite welfare gains. Using equation (35) and CD matching, social welfare
can be written as

W =

∫ ∞

t=0

e−rt

[∫
Rt

ytznt(z)dz + ubt − ktv

]
dt (47)

=

∫ ∞

t=0

e−rt

[
(1− u) yt

∫
Rt

ztgt(z)dz + ubt − ktθu

]
dt

=

∫ ∞

t=0

e−rt

[
(1− u) ytZt + ubt −

1− γ

γ
(ytRt − bt)u

]
dt,

where gt(z) is the density corresponding to the distribution function Gt(z).
In the MM model, Lemma 1 and Proposition 1 yield the closed-form expres-

sion

W =

∫ ∞

t=0

e−(r−gy−gz)t

[
(1− u)

α

α− 1
y0R0 + ub0 −

1− γ

γ
(y0R0 − b0)u

]
dt

=

[
(1− u) α

α−1 − 1−γ
γ u

]
y0R0 +

1
γub0

r − gy − gz
. (48)
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Since R0 → ∞ as k → 0, welfare diverges to +∞ provided the coefficient on
y0R0 is positive—that is, when unemployment is not too high. Conditions (a)
and (c) in Theorem 1 guarantee that it is, in fact, the case.

Proposition 3 In an interior SBGP with M(u, v) = uγv1−γ , limk→0 W = ∞.
Proof. See Appendix.

The implication of Proposition 3 is stark: eliminating search frictions delivers
infinite welfare gains.

In our exponential BGP variant, unemployment vanishes as k → 0, so welfare
given in equation (47) simplifies to

lim
k→0

W =

∫ ∞

t=0

e−rtZtdt =

∫ ∞

t=0

e−rt

[
1

λ
+R0 + (gA/λ) t

]
dt

=
1

r

(
1

λ
+R0

)
+

gA/λ

r2
.

Since R0 → ∞, welfare again diverges to +∞.
Conclusion. In both the MM and exponential inspection frameworks, elim-

inating search frictions leads to unbounded welfare gains. This outcome stands
in sharp contrast to the DMP model, where welfare gains are finite, and high-
lights a fundamental weakness of inspection models: they predict implausibly
large benefits from removing frictions.

3.9 Possible Generalizations

In principle, equation (1) can be used to characterize the BGP path of reserva-
tion productivity implied by a given sample distribution, while equation (19) can
be employed to reverse-engineer required parameter restrictions for bt and/or
kt. Specifically, along a BGP, equation (1) can be written as

Rt = H−1
(
ϕ1e

−gAt
)
,

where H (Rt) = 1−F (Rt) is the survival function and ϕ1 ≡ A0p(θ)
hue

is a constant.
Then bt and kt must satisfy:

bt = ytH
−1
(
ϕ1e

−gAt
)
− kt

M1 (1, θ)

M2 (1, θ)
.

Here ϕ1 and θ are endogenous but constant. A few illustrative cases are:

1. Pareto: F (z) = 1 −
(
zl
z

)α
, H(R) =

(
zl
R

)α
, H−1(x) = zlx

−1/α, Rt =

zlϕ1e
gAt/α.

2. Exponential: F (z) = 1 − e−λR, H(R) = e−λR, H−1(x) = −(1/λ) lnx,
Rt = −(1/λ) lnϕ1 + (1/λ)gAt.
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3. Gompertz: F (z) = 1 − e−τ(eλz−1), H(R) = e−τ(eλR−1), H−1(x) =
(1/λ) ln

(
1− 1

τ lnx
)
, Rt = (1/λ) ln

(
1− 1

τ lnϕ1 − 1
τ + gAt

)
.

4. Weibull: F (z) = 1−e−(λR)τ ,H(R) = e−(λR)τ , H−1(x) = (1/λ) (− lnx)
1/τ

,

Rt = (1/λ) (− lnϕ1 + gAt)
1/τ

.

The procedure just described provides BGP candidates. However, a com-
plete solution requires to construct the proper initial distribution G0 using equa-
tion (26) and verifying that all BGP-defining equations are satisfied.

4 Biased Technological Change

This section develops an alternative to the inspection framework: a DMP model
with homogeneous workers and biased technological progress in the matching
function. We show that when technological change is biased and the inputs in
the matching function are complements, a well-behaved limiting BGP exists.
This BGP preserves the central properties of the standard DMP model under
worker-augmenting technological progress: welfare gains from eliminating search
frictions are finite, and unemployment vanishes when vacancies are costless.

The section proceeds in two parts. The first subsection formalizes the notion
of biased technological progress in the matching function and provides a sharp
characterization for the constant elasticity of substitution (CES) case. We show
that, contrary to MM’s claim, their results are not robust to the introduction
of biased progress. In particular, the limiting growth rate of matches may
converge to zero despite ongoing technological improvements, rendering their
main theorem inapplicable in such cases. This analysis assumes a stationary
tightness rate.

The second subsection embeds biased technological progress into the full
DMP model. We show that a BGP with constant tightness emerges endoge-
nously as a general equilibrium outcome—our main contribution. A key feature
of this equilibrium is that it is necessarily inefficient, highlighting a sharp con-
trast between planner and market allocations.

4.1 Biased Technological Change in the Matching Func-
tion

Section 2 assumed a matching function of the form AtM(ut, vt). In this formu-
lation, technological progress is Hicks-neutral. We now consider a more general
specification,

M (Atut, Btvt) ,

where At and Bt represent unemployment- and vacancy-augmenting technolo-
gies, growing at constant exogenous rates gA ≥ 0, and gB ≥ 0, respectively.

The job-finding rate is defined as

mt ≡
M (Atut, Btvt)

ut
= M (At, Btθt) =: mt (θt) . (49)
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where θ ≡ v
u is the market tightness. For later purposes, it is convenient to

define effective tightness as

θ̂t ≡
Btvt
Atut

= θt
Bt

At
.

When At = Bt, the function simplifies to AtM (ut, vt) , the Hicks-neutral case
considered by MM. MM argue that their results extend beyond Hicks-neutral
progress:

”In the case of input-augmenting search progress, the rate gm
converges to some g∗m... In the limit as gm → g∗m, our theorems hold
with g∗m replacing gA.” (MM, footnote 10)3.

However, for their results to hold, it is essential that g∗m > 0. Otherwise,
their main results do not apply. If gm = 0, then a Pareto distribution cannot be
derived from their equation (10). Moreover, with gA = 0 and their assumption
δ = 0, job destruction disappears, and unemployment vanishes in the limit.

To see why g∗m = 0 may naturally arise under biased technological progress,
consider the CES matching function:

M (Au,Bv) =

{
(α (Au)

σ
+ (1− α) (Bv)

σ
)
1/σ

, σ ≦ 1, σ ̸= 0.

(Au)
α
(Bv)

1−α
if σ = 0.

}
. (50)

This specification has a long tradition in the search-and-matching literature
(e.g., Den Haan et al., 2000; Hagedorn and Manovskii, 2008; Petrosky-Nadeau
et al., 2018). The Cobb-Douglas case corresponds to σ = 0. Workers and
vacancies are complements if σ < 0 and substitutes if σ > 0. Córdoba et al.
(2024) discusses several advantages of the CES function with complementarity.

For the CES function, the growth rate of meetings is

gm,t = µ
(
θ̂t

)
gA +

(
1− µ

(
θ̂t

))
gB , (51)

where
µ
(
θ̂
)
=

α

α+ (1− α) θ̂
σ . (52)

The formula confirms that when technological progress is Hicks-neutral (gA =
gB), we obtain gm,t = gA = gB > 0. The next proposition characterizes the limit
behavior when technological progress is either worker or vacancy augmenting.

Proposition 4 Suppose 0 < θ < ∞, and either (i) gA > 0 and gB = 0; or
(ii) gB > 0 and gA = 0. Then

g∗m = lim
t→∞

gm,t =

 max {gA, gB} > 0 if σ > 0
αgA + (1− α) gB > 0 if σ = 0

0 if σ < 0

 .

3MM use the notation gp for the growth rate of meetings; we use gm.
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Proof. As t → ∞, effective tightness satisfies

θ̂t →
{

0, gA > 0,
∞, gB > 0

}
.

From equation (52):

lim
t→∞

µ
(
θ̂t

)
=

 σ > 0 σ < 0
gA > 0 1 0
gB > 0 0 1

 .

Substituting into equation (51) yields:

lim
t→∞

gm,t =

 σ > 0 σ < 0
gA > 0 gA 0
gB > 0 gB 0

 .

The proposition shows that when inputs are substitutes, g∗m > 0, which
is necessary for MM’s results to hold. The more interesting cases are when
inputs are complements (σ < 0) and technological progress is biased, either
worker-augmenting or vacancy-augmenting, in which cases g∗m = 0. In these
cases, MM’s results do not hold. The reason is that biased progress runs into
diminishing returns: the non-improving input becomes a bottleneck under strict
complementarity, creating an upper bound on meetings even in the presence of
continued technological progress.

We now explore the implications of this limit behavior within the DMP
search-and-matching model with declining search frictions.

4.2 DMP Model with Biased Technological Change

There is a unit one of workers, of which nt are employed and ut are unemployed.
Employed workers produce yt = yegt, the unemployed workers produce bt =
begt, where y > b, and vacancy posting costs kt = kegt at time t. Given an
initial employment level n0, the social planner solves

max
{nt,vt,ut}∞

t=0

∫ ∞

0

e−(r−g)t (nty + utb− kvt) dt subject to

·
nt = M (Atut, Btvt)− δnt,∀t ≥ 0, (53a)

ut = 1− nt, ∀t ≥ 0, (53b)

where At = A0e
gAt and Bt = B0e

gBt, r > g, and δ > 0. Let ρ ≡ r − g denote
the effective discount rate.
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Optimality conditions. Let e−ρtλt and e−ρtηt denote the Lagrange multi-
pliers associated with constraints (53a) and (53b), respectively. The first-order
conditions with respect to vt, ut, and nt are:

k =
∂Mt

∂vt
λt = st (1− µt)λt, (54)

ηt = b+
∂Mt

∂ut
λt = b+mtµtλt, and (55)

y − ηt − δλt = ρλt −
·
λt. (56)

Here, st is the job-filling rate and µt the elasticity of the matching function with
respect to ”effective” job seekers:

st ≡
Mt

vt
= mt (θt) /θt and (57)

µt ≡
∂Mt

∂ (Atut)

Atut

Mt
= µ

(
θ̂t

)
.

Optimality also requires the transversality condition limt→∞ e−ρtλtnt = 0.
Equations (54) to (56) mirror those of the canonical DMP framework. From

equation (54), the efficient number of vacancies equates the marginal cost k
with the marginal new matches associated to a vacancy, ∂Mt

∂vt
, multiplied by the

shadow value of a match, λt. The marginal gain ∂Mt

∂vt
equals the average gain

st =
Mt

vt
, scaled down by the elasticity 1− µt.

Equation (55) states that the shadow value flow of an unemployed worker,
ηt, is equal the worker’s own output, b, plus the expected contribution to new
matches, ∂Mt

∂ut
, weighted by λt. Here, the marginal gain ∂Mt

∂ut
equals the average

gain, mt, scaled by µt.
Finally, combining equation (55) and equation (56) yields the value of a

match:

ρλt = y − b− (δ +mtµt)λt +
·
λt. (58)

This expression shows that the net return of a match is the added output y− b

plus the the capital gains,
·
λt, offset by the effective depreciation rate. Depreci-

ation includes both the exogenous job destruction rate, δ, and the endogenous
effect mtµt, which captures the fact that a successful match reduces the pool of
job seekers and thereby lowers future matching opportunities.

4.2.1 Balanced Growth Characterization

Consider balanced growth paths (BGPs) along which variables grow at con-
stant rates. The following proposition shows that—despite improvements in
the matching technology—labor-market variables remain stationary along any
BGP.
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Proposition 5 Along a balanced growth path, the growth rates of n, u, m, µ, λ,
s, and θ are zero.
Proof. Since population is constant, both employment (n) and unemployment
(u) must be constant along a BGP. Equation (53a) then reduces to

δn = mtu = mu.

Thus mt = m along a BPG. Similarly, since µt ∈ [0, 1] , we must have µt =
µ. Substituting these results into equation (58) and imposing the transversality
condition yields

λt = λ =
y − b

ρ+ δ +mµ
.

Substituting into equation (54) gives

k =
st (1− µ)

ρ+ δ +mµ
(y − b) . (59)

Equation (59) implies that st = s, and since m = sθt then θt = θ along a BGP.

Equation (59) determines θ, and the unemployment rate follows from

u =
δ

m+ δ
. (60)

Markets. Equation (59) parallels Pissarides (2000, Eq. 1.24) in a decentral-
ized setting where firms post vacancies with success probability s∗, workers find
jobs with probability θ∗s∗, firms capture a fraction 1− γ of the match surplus,
and free entry holds. In our notation:

k =
s∗ (1− γ)

ρ+ δ +m∗γ
(y − b) .4 (61)

Free entry further implies that the expected net return of posting a vacancy,
s∗ (y − w∗) /k − δ, equals the effective market return ρ, where w which yields
the wage equation:

w∗ = y − (ρ+ δ) k

s∗
.

The market equilibrium is generally inefficient because the worker’s bargaining
power is fixed at a constant value γ > 0, while in the planner’s allocation

the effective bargaining power is variable, µ
(
θ̂t

)
. This permits the market

equilibrium to sustain a BGP; the corresponding efficient allocation, by contrast,
necessarily rules one out.

4Pissarides (2000) assumes g = 0, unlike here.
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4.2.2 Equilibrium

Consider first the market solution. According to equation (61), a BGP with
declining search costs exists if they do not affect m∗ or s∗ = m∗/θ∗. Taking
time derivatives of equation (49) yields

·
m

∗
t

m∗
t

= M1 (At, Btθ
∗)

At

M

·
At

At
+M2 (At, Btθ

∗)
θBt

M

·
Bt

Bt
(62)

= µ
(
θ̂
∗
t

)
gA +

(
1− µ

(
θ̂
∗))

gB .

All terms in this expression are non-negative. The following proposition follows

naturally:

Proposition 6 There is no BGP in the market economy when gA > 0 and
gB > 0. In particular, there is no BGP with Hicks-neutral technological progress
in the matching function.

This proposition confirms MM’s result for the Hicks-neutral case, namely
that there is no BGP in a model without inspection. The next lemma suggests
that a BGP may exist when technological change is either vacancy or worker
augmenting.

Lemma 2 Suppose θ = θ∗ ∈ (0,∞) . For
·
m

∗
t

m∗
t
= 0, one of the following two

conditions must hold:
(i) gA > 0, gB = 0, and µ (0) = 0, or
(ii) gB > 0, gA = 0, and µ (∞) = 1.

Proof. (i) If gA > 0 and gB = 0, then θ̂
∗
t → 0 and µ

(
θ̂
∗
t

)
→ µ (0) = 0.

Hence,
·
m

∗
t

m∗
t
= µ

(
θ̂
∗
t

)
gA → 0. (ii) If gA = 0 and gB > 1, then θ̂

∗
t → ∞ and

µ
(
θ̂
∗
t

)
→ µ (∞) = 1. Hence,

·
mt

mt
=
(
1− µ

(
θ̂
∗
t

))
gB → 0.

At this point, it is convenient to focus on the CES matching function given
in equation (50). Applying the lemma, we find that strict complementarity is a
necessary condition for the existence of a BGP. In the CES case, the function

µ
(
θ̂
)
satisfies equation (52). When inputs are strict complements, σ < 0, we

have µ (0) = 0 and µ (∞) = 1, exactly as required by the lemma. In contrast,
when inputs are substitutes (σ > 0), we obtain µ (0) = 1 and µ (∞) = 0—the
opposite of the condition required by the lemma. Therefore, strict complemen-
tarity is necessary, though not sufficient, for the existence of a BGP.

4.3 CES Matching

Proposition 7 Suppose M is a CES matching function. An interior BGP of
the market economy exists in the following two cases:
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(i) gA > 0, gB = 0, σ < 0, γ > 0, and

k <
(1− α)

1/σ
B (1− γ)

ρ+ δ
(y − b) ; (63)

(ii) gA = 0, gB > 0, σ < 0, γ < 1, and y > b.
Proof. (i) Under the stated conditions, the matching function converges to

M (Au,Bv) = (1− α)
1/σ

Bv. Hence, s∗1 = (1− α)
1/σ

B, m∗
1 = (1− α)

1/σ
Bθ∗1,

u∗
1 = δ

m∗
1+δ ,

θ∗1 =
(1− α)

1/σ
B (1− γ) (y − b)− (ρ+ δ) k

(1− α)
1/σ

Bγk
, and

w∗
1 = y − (ρ+ δ) k

(1− α)
1/σ

B
.

Condition (63) guarantees that an interior solution for θ∗ exists. (ii) Under the
stated conditions, the matching function converges to M (Au,Bv) = α1/σAu.
Thus, s∗2 = α1/σA/θ∗2, m

∗
2 = α1/σA, u∗

2 = δ
m∗

2+δ ,

θ∗2 =
α1/σA (1− γ)

ρ+ δ + α1/σAγ

y − b

k
, and

w∗
2 = y − (ρ+ δ) (1− γ) (y − b)

ρ+ δ + α1/σAγ
.

An interior solution exist iff 0 < γ < 1 and y > b.

Discussion. The limit BGP characterized in Proposition 1 emerges because
the CES matching function converges to a linear technology in which the sole
effective input is the one not experiencing technological progress. With labor-
augmenting progress, the matching function converges to a linear function of
effective vacancies. Conversely, with vacancy-augmenting progress, it converges
to a linear function of effective unemployed workers.

Despite these asymptotic linearities, the unemployment rate remains well
behaved. For example, increases in the vacancy posting cost, unemployment
benefits, or workers’ bargaining power reduce market tightness and raise unem-
ployment in the usual way.

Proposition 7 provides a counterexample to MM’s claim—made in their foot-
note 10—that their model remains valid in the limit even under input-specific
technological change. Not only the growth rate of the meetings rate goes to zero
in these cases, but the canonical DMP model delivers a well-defined limit BGP
without requiring heterogeneity, Pareto distributions, or inspection.

Of the two cases identified in Proposition 7, case (i) is the only one that
delivers the standard result that unemployment vanishes when vacancy posting
is costless. Furthermore, Córdoba et al. (2024) also show that labor-augmenting
technological progress in the matching function can account for a significant
share of the decline in the labor share and the fall in market tightness observed
between 1980 and 2007.
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4.3.1 Welfare Cost of Search Frictions

An important distinction between the DMP model analyzed in this section and
the inspection models discussed previously lies in the potential welfare gains
from eliminating search frictions. In a BGP, social welfare satisfies:

W (u) =
ny + ub− kv

r − g
=

y − uy + ub− kθu

r − g

=
y − (y − b)

(
ρ+δ+m
ρ+δ+mµ

)
u

r − g
(using equations (57) and (61))

= y
1− (1− φ)

(
u(ρ+δ)+(1−u)δ
u(ρ+δ)+(1−u)δµ

)
u

r − g
(using equation (60)),

where φ = b/y.
The relative welfare costs of search frictions can then be defined as:

Ψ (u) ≡ W (0)−W (u)

W (0)
= (1− φ)

(
u (ρ+ δ) + (1− u) δ

u (ρ+ δ) + (1− u)µδ

)
u.

This measure is relative to the ideal benchmark of full employment. Such bench-
mark is achieved when k = 0 in case (i) of Proposition 7 but not in case (ii).
The key point is that the welfare costs of search frictions, or unemployment for
short, is bounded above by 1− φ, which occurs when µ = 0 and ρ = 0.

In practice, estimated welfare costs fall well below this upper bound. For
example, under the parametrization employed by Shimer (2005), the welfare
cost is Ψ (u) = 6.5%.5

5 Conclusion

Martellini and Menzio (2020) pose a fundamental puzzle: how can technological
progress in the matching function (“declining search frictions”) be reconciled
with the empirical stationarity of unemployment, tightness, and the Beveridge
curve? In the spirit of King et al. (1988), they seek necessary and sufficient
conditions under which balanced growth can coexist with those stationary labor-
market facts.

This paper offers three main conclusions.
First, MM’s characterization is too strong. Their conditions (inspection

goods with Pareto-distributed quality) are sufficient but not necessary. Balanced
growth paths arise outside their framework.

Second, the inspection approach has implausible implications in the cases
we study. In the Pareto version, unemployment persists even when vacancies
are free to post, and the welfare gains from eliminating search frictions are
unbounded. In the exponential version, unemployment does vanish with cost-
less posting, yet the welfare gains remain infinite because workers keep raising

5We use φ = 0.4, ρ = 0.012, µ = 0.72, δ = 0.1, and u = 4%.
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their reservation standards as matching becomes arbitrarily easy and the quality
support is unbounded.

Third, a constructive alternative exists within a standard DMP environment
once we allow for biased technological change and complementarity in matching.
With complementary inputs, biased progress in one input makes the other input
relatively scarcer, creating a bottleneck and hence diminishing returns to search
improvements. The growth rate of meetings falls to zero, delivering a well-
behaved BGP with stationary unemployment, tightness, and transition rates. In
this setting, unemployment vanishes as frictions disappear but only if progress
is worker-augmenting, and—crucially—welfare gains are finite. However, the
BGP is necessarily inefficient: the market equilibrium admits a stationary path
with declining frictions, whereas the planner’s allocation does not, reflecting
the failure of the Hosios condition when bargaining weights are fixed but the
planner’s shadow elasticity varies with tightness.

These results reframe the interpretations MM consider. They do not sup-
port the view that search frictions are irrelevant, nor that the historical decline
in frictions has been too small. Instead, they point to a specific countervail-
ing mechanism—endogenous bottlenecks from complementarity under biased
progress—that can neutralize the growth effects of improved matching while
preserving stationary labor-market variables. They also show that MM’s suffi-
ciency result does not pin down a unique path: stationarity can emerge without
perpetual growth in reservation quality (as in the exponential case) and with-
out attributing growth to declining frictions (as in the biased-technology DMP
case).

Finally, this agenda opens clear avenues for future work. Empirically, mea-
suring the bias in the matching progress (worker- vs. vacancy-augmenting)
and the degree of complementarity is central to distinguishing between in-
spection and bottleneck mechanisms and to conducting credible welfare assess-
ments. Theoretically, exploring policy in environments with biased progress and
complementarity—where market BGPs are inefficient—can clarify the role of
bargaining institutions as well as vacancy taxes or subsidies. Relatedly, Córdoba
et al. (2024) show that CES matching with worker-augmenting progress can ac-
count for secular movements in the labor share and tightness, underscoring the
empirical relevance of biased technological change in matching.
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Appendix

Proof of Equation (11): To solve this differential equation, write it as

e−(r+δ)τ

[
·
λt+τ (z)− (r + δ)λt+τ (z)

]
= e−(r+δ)τ [yt+τRt+τ − yt+τz] .

Integrating yields:∫ d

0

e−(r+δ)τ

[
·
λt+τ (z)− (r + δ)λt+τ (z)

]
dτ =

∫ d

0

e−(r+δ)τ [yt+τRt+τ − yt+τz] dτ.

The integral on the left-hand side simplifies to:[
e−(r+δ)τλt+τ (z)

]d
0
= e−(r+δ)dλt+d(z)− λt(z).

Proof of Equation (36): Let a =: gA/λ. Equation (13) becomes

λt (z) =

∫ d(z,t)

0

e−(r+δ)τ (z −Rt − aτ) dτ

= (z −Rt)

∫ dt(z)

0

e−(r+δ)τdτ − a

∫ dt(z)

0

τe−(r+δ)τdτ

= (z −Rt)

[
−e−(r+δ)τ

r + δ

]dt(z)

0

− a

[
−e−(r+δ)τ

(
τ

r + δ
+

1

(r + s)
2

)]dt(z)

0

=
z −Rt

r + δ

[
−e−(r+δ)dt(z) + 1

]
− a

r + δ

[
−e−(r+δ)dt(z)

(
dt (z) +

1

r + δ

)
+

1

r + δ

]
=

adt(z)

r + δ

[
1− e−(r+δ)dt(z)

]
+

a

r + δ

[
e−(r+δ)dt(z)

(
dt (z) +

1

r + δ

)
− 1

r + δ

]
=

a

r + δ

[
dt(z)

[
1− e−(r+δ)dt(z)

]
+ e−(r+δ)dt(z)

(
dt (z) +

1

r + δ

)
− 1

r + δ

]
=

a

r + δ

[
dt(z)

[
1− e−(r+δ)dt(z)

]
+ dt (z) e

−(r+δ)dt(z) + e−(r+δ)dt(z)
1

r + δ
− 1

r + δ

]
=

a

r + δ

[
dt(z) +

e−(r+δ)dt(z)

r + δ
− 1

r + δ

]
.

We next need to calculate∫
Rt

λt(z)f(z)dz =
a

r + δ

∫
Rt

[
dt(z) +

e−(r+δ)dt(z)

r + δ
− 1

r + δ

]
f(z)dz

=
a

r + δ

∫
Rt

[
z −Rt

a
+

e−(r+δ)
z−Rt

a

r + δ
− 1

r + δ

]
λe−λzdz
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∫
Rt

λt(z)f(z)dz = (1− F (Rt))

∫
Rt

λt(z)
f(z)

1− F (Rt)
dz

= (1− F (Rt))E [λt(z)|z > R]

= (1− F (Rt))
a

r + δ
E

[
dt(z) +

e−(r+δ)dt(z)

r + δ
− 1

r + δ
|z > R

]
= (1− F (Rt))

a

r + δ

{
Ez>R [dt(z)] + Ez>R

[
e−(r+δ)dt(z)

r + δ

]
− 1

r + δ

}
.

Now,

Ez>R [dt(z)] = Ez>R

[
z −Rt

a

]
=

1

a
Ez>Rt

z − Rt

a
=

1

a

(
1

λ
+Rt

)
− Rt

a
=

1

aλ

Ez>R

[
e−(r+δ)dt(z)

r + δ

]
=

1

r + δ
Ez>R

[
e−(r+δ)dt(z)

r + δ

]
=

1

r + δ

[
λa

r + δ + λa

]
.

Therefore,∫
Rt

λt(z)f(z)dz = (1− F (Rt))
a

r + δ

{
1

aλ
+

1

r + δ

λa

r + δ + λa
− 1

r + δ

}
= e−λRt

a

r + δ

[
1

aλ
+

1

r + δ

λa

r + δ + λa
− 1

r + δ

]
= e−λRt

1

(r + δ)λ

[
1 +

1

r + δ

(λa)2

r + δ + λa
− aλ

r + δ

]
= e−λRt

1

(r + δ)λ

[
r + δ − gA

r + δ
+

1

r + δ

g2A
r + δ + gA

]
. (64)

Proof of Proposition 2: Substituting equation (42) and equation (43) into
equation (39):

h∞
ue = A0z

α
l

(
Ω1k

− α
α−(1−γ)

0

)1−γ
(

γ

1− γ

Ω1

y0
k
− 1−γ

α−(1−γ)

0

)−α

= Ω2k
α(1−γ)−α(1−γ)

α−(1−γ)

0 = Ω2,
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where

Ω2 = A0z
α
l Ω

1−γ
1

(
γ

1− γ

Ω1

y0

)−α

= A0z
α
l

(
γ

1− γ

1

y0

)−α

Ω1−γ−α
1

= A0z
α
l

(
γ

1− γ

1

y0

)−α(
1− γ

γ
(A0 (1− γ) Φ1)

1/(α−1)
y

α
α−1

0

) 1−γ−α
1+γ/(α−1)

= A
1+ 1

α−1
1−γ−α

1+γ/(α−1)

0 y
α+ α

α−1
1−γ−α

1+γ/(α−1)

0

×zαl

(
γ

1− γ

)−α(
1− γ

γ
((1− γ) Φ1)

1/(α−1)

) 1−γ−α
1+γ/(α−1)

= zαl

(
γ

1− γ

)−α (
γ−1 (1− γ)

α/(α−1)
) 1−γ−α

1+γ/(α−1)

Φ−1
1

= zαl γ
−α− 1−γ−α

1+γ/(α−1) (1− γ)
α
(1− γ)

−α
Φ−1

= zαl γ
−1Φ−1

1 .

Therefore,

h∞
UE = Ω2 = zαl γ

−1Φ−1
1 =

zαl γ
−1

zα
l

(α−1)((α−1)gz+(r+δ−gy))

= (α− 1)

(
α− 1

α
gA + r + δ − gy

)
/γ.

Proof of Proposition 3: According to equation (48), W → ∞ as k → ∞ if
(1− u) α

α−1 > 1−γ
γ u or

α
α−1

α
α−1 + 1−γ

γ

=
α

α−1

αγ+(1−γ)(α−1)
(α−1)γ

=
αγ

αγ + (1− γ) (α− 1)

> u∞ =
gA + δ

gA + δ + hue
.

This simplifies to:

α

α− 1
h∞
ue >

1− γ

γ
(gA + δ)

α

α− 1
h∞
ue =

α

γ
(r + δ − gy + gA − gz) =

α

γ
(gA + δ + r − gy − gz).

As long as r − gy − gz > 0, then because α > 1 and 1− γ < 1

α

α− 1
h∞
ue =

α

γ
(gA + δ + r − gy − gz) >

1− γ

γ
(gA + δ).
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