Número:
230
Publicado:
Clasificación JEL:
C02, C20
Palabras clave:
Concavity, Monotonicity, Lipschitz, Continuity

Lo más reciente
Lina Fernanda Torres-Gutierrez, Gonzalo Ossa-Stipcianos, Edwin Mauricio Parra-Rodriguez, Egberto Alexander Riveros, Alvaro José Martinez-Monroy, Julián Andrés Gomez-Duran, Juan Sebastián Rojas-Moreno
Gómez-Molina Andrés Camilo, Carlos Quicazán-Moreno, Hernando Vargas-Herrera
The following is proven here: let W : X × C ? R, where X is convex, be a continuous and bounded function such that for each y?C, the function W (·,y) : X ? R is concave (resp. strongly concave; resp. Lipschitzian with constant M; resp. monotone; resp. strictly monotone) and let Y?C. If C is compact, then there exists a continuous extension of W, U : X × Y ? [infX×C W,supX×C W], such that for each y?Y, the function U(·,y) : X ? R is concave (resp. strongly concave; resp. Lipschitzian with constant My; resp. monotone; resp. strictly monotone).