Número:
230
Publicado:
Clasificación JEL:
C02, C20
Palabras clave:
Concavity, Monotonicity, Lipschitz, Continuity

Lo más reciente
Andrea Sofía Otero-Cortés, Karina Acosta, Luis E. Arango, Danilo Aristizábal, Oscar Iván Ávila-Montealegre, Oscar Becerra, Cristina Fernández, Luz Adriana Flórez, Luis Armando Galvis-Aponte, Anderson Grajales, Catalina Granda, Franz Alonso Hamann-Salcedo, Juliana Jaramillo-Echeverri, Carlos Medina, Jesús Enrique Morales-Piñero, Alejandra Morales, Leonardo Fabio Morales, Juan José Ospina-Tejeiro, Christian Manuel Posso-Suárez, José Pulido, Mario Andrés Ramos-Veloza, Alejandro Sarasti-Sierra
John Sebastian Tobar-Cruz, Carlos Alberto Ruiz-Martínez
Ana María Iregui-Bohórquez, Ligia Alba Melo-Becerra, María Teresa Ramírez-Giraldo, Jorge Leonardo Rodríguez-Arenas
The following is proven here: let W : X × C ? R, where X is convex, be a continuous and bounded function such that for each y?C, the function W (·,y) : X ? R is concave (resp. strongly concave; resp. Lipschitzian with constant M; resp. monotone; resp. strictly monotone) and let Y?C. If C is compact, then there exists a continuous extension of W, U : X × Y ? [infX×C W,supX×C W], such that for each y?Y, the function U(·,y) : X ? R is concave (resp. strongly concave; resp. Lipschitzian with constant My; resp. monotone; resp. strictly monotone).