Measuring the Unmeasurable: Unraveling the complexities of real-time output gap estimation

Borradores de Economia
Number: 
1284
Published: 
Authors:
Karen L. Pulido-Mahechaa,
Sergio Restrepo Ángela,
Franky Juliano Galeano-Ramíreza
Classification JEL: 
E2, E3, E6
Keywords: 
output gaps, real-time estimation, Business cycles

The most recent

Julián Alonso Cárdenas-Cárdenas, Deicy Johana Cristiano-Botia, Eliana Rocío González-Molano, Carlos Alfonso Huertas-Campos
Luis E. Arango, Juan José Ospina-Tejeiro, Fernando Arias-Rodríguez, Oscar Iván Ávila-Montealegre, Jaime Andrés Collazos-Rodríguez, Diana M. Cortázar Gómez, Juan Pablo Cote-Barón, Julio Escobar-Potes, Aarón Levi Garavito-Acosta, Franky Juliano Galeano-Ramírez, Eliana Rocío González-Molano, Maria Camila Gomez Cardona, Anderson Grajales, David Camilo López-Valenzuela, Wilmer Martinez-Rivera, Nicolás Martínez-Cortés, Rocío Clara Alexandra Mora-Quiñones, Sara Naranjo-Saldarriaga, Antonio Orozco, Daniel Parra-Amado, Julián Pérez-Amaya, José Pulido, Karen L. Pulido-Mahecha, Carolina Ramírez-Rodríguez, Sergio Restrepo Ángel, José Vicente Romero-Chamorro, Nicol Valeria Rodríguez-Rodríguez, Norberto Rodríguez-Niño, Diego Hernán Rodríguez-Hernández, Carlos D. Rojas-Martínez, Johana Andrea Sanabria-Domínguez, Diego Vásquez-Escobar
Luis Armando Galvis-Aponte, Adriana Isabel Ortega-Arrieta, Adriana Marcela Rivera-Zárate

Abstract

This paper evaluates seven output gap models for real-time estimates, based on three criteria: stability of estimations on new observations, data revisions and/or methodological changes; inflation forecasting accuracy; and potential output response to structural economic shocks. Results confirm no single model outperforms across all criteria. Structural VARs exhibit superior inflation forecasts but show high instability, while semi-structural models produce more theoretically consistent potential output responses. To overcome this trade-off, we propose a novel clustering approach to pool models based on their real-time performance, yielding improved estimates. Our findings highlight the value of this method for enhancing real-time output gap measurement and informing monetary policy decisions.