Clustering and forecasting inflation expectations using the World Economic Survey : the case of the 2014 oil price shock on inflation targeting countries

Borradores de Economia
Número: 
993
Publicado: 
Clasificación JEL: 
C02, C45, C63, E27
Palabras clave: 
Expectativas de inflación, Aprendizaje automático, Mapas autoorganizados, Redes neuronales autorregresivas no lineales

Lo más reciente

Julián Alonso Cárdenas-Cárdenas, Deicy Johana Cristiano-Botia, Eliana Rocío González-Molano, Carlos Alfonso Huertas-Campos
Luis E. Arango, Juan José Ospina-Tejeiro, Fernando Arias-Rodríguez, Oscar Iván Ávila-Montealegre, Jaime Andrés Collazos-Rodríguez, Diana M. Cortázar Gómez, Juan Pablo Cote-Barón, Julio Escobar-Potes, Aarón Levi Garavito-Acosta, Franky Juliano Galeano-Ramírez, Eliana Rocío González-Molano, Maria Camila Gomez Cardona, Anderson Grajales, David Camilo López-Valenzuela, Wilmer Martinez-Rivera, Nicolás Martínez-Cortés, Rocío Clara Alexandra Mora-Quiñones, Sara Naranjo-Saldarriaga, Antonio Orozco, Daniel Parra-Amado, Julián Pérez-Amaya, José Pulido, Karen L. Pulido-Mahecha, Carolina Ramírez-Rodríguez, Sergio Restrepo Ángel, José Vicente Romero-Chamorro, Nicol Valeria Rodríguez-Rodríguez, Norberto Rodríguez-Niño, Diego Hernán Rodríguez-Hernández, Carlos D. Rojas-Martínez, Johana Andrea Sanabria-Domínguez, Diego Vásquez-Escobar
Luis Armando Galvis-Aponte, Adriana Isabel Ortega-Arrieta, Adriana Marcela Rivera-Zárate

This paper examines inflation expectations of the World Economic Survey for ten inflation targeting countries. First, by a Self Organizing Maps methodology, we cluster the trajectory of agents inflation expectations using the beginning of the oil price shock occurred in June of 2014 as a benchmark in order to discriminate between those countries that anticipated the shock smoothly and those with brisk changes in expectations. Then, the expectations are modeled by artificial neural networks forecasting models. Second, for each country we investigate the information content of the quantitative survey forecast by comparing it to the average annual inflation based on national consumer price indices. The results indicate the presence of heterogeneity among countries to anticipate inflation under the oil shock and, also different patterns of accuracy to predict average annual inflation were found depending on the observed inflation trend.