Nowcasting economic activity with electronic payments data: A predictive modeling approach

Número: 
1037
Publicado: 
Clasificación JEL: 
E27, C53, C45

Lo más reciente

Andrea Sofía Otero-Cortés, Karina Acosta, Luis E. Arango, Danilo Aristizábal, Oscar Iván Ávila-Montealegre, Oscar Becerra, Cristina Fernández, Luz Adriana Flórez, Luis Armando Galvis-Aponte, Anderson Grajales, Catalina Granda, Franz Alonso Hamann-Salcedo, Juliana Jaramillo-Echeverri, Carlos Medina, Jesús Enrique Morales-Piñero, Alejandra Morales, Leonardo Fabio Morales, Juan José Ospina-Tejeiro, Christian Manuel Posso-Suárez, José Pulido, Mario Andrés Ramos-Veloza, Alejandro Sarasti-Sierra
Ana María Iregui-Bohórquez, Ligia Alba Melo-Becerra, María Teresa Ramírez-Giraldo, Jorge Leonardo Rodríguez-Arenas

Economic activity nowcasting (i.e. making current-period estimates) is convenient because most traditional measures of economic activity come with substantial lags. We aim at nowcasting ISE, a short-term economic activity indicator in Colombia. Inputs are ISE’s lags and a dataset of payments made with electronic transfers and cheques among individuals, firms, and the central government. Under a predictive modeling approach, we employ a nonlinear autoregressive exogenous neural network model. Results suggest that our choice of inputs and predictive method enable us to nowcast economic activity with fair accuracy.

Also, we validate that electronic payments data significantly reduces the nowcast error of a benchmark non-linear autoregressive neural network model.

Nowcasting economic activity from electronic payment instruments data not only contributes to agents’ decision making and economic modeling, but also supports new research paths on how to use retail payments data for appending current models.