A Continuous Extension that Preserves Concavity, Monotonicity and Lipschitz Continuity

Borradores de Economia
Number: 
230
Published: 
Classification JEL: 
C02, C20
Keywords: 
Human capital agglomeration, Social returns, Private returns, Externalities, Uncertainty, Fiscal policy

The most recent

Jaime Alfredo Bonet-Moron, Jaime Andrés Collazos-Rodríguez, Karen Astrid Rubio-Ramírez, Adolfo Ramírez-Moreno, Andrés Felipe Parra-Solano
Julián Alonso Cárdenas-Cárdenas, Deicy Johana Cristiano-Botia, Eliana Rocío González-Molano, Carlos Alfonso Huertas-Campos
Luis E. Arango, Juan José Ospina-Tejeiro, Fernando Arias-Rodríguez, Oscar Iván Ávila-Montealegre, Jaime Andrés Collazos-Rodríguez, Diana M. Cortázar Gómez, Juan Pablo Cote-Barón, Julio Escobar-Potes, Aarón Levi Garavito-Acosta, Franky Juliano Galeano-Ramírez, Eliana Rocío González-Molano, Maria Camila Gomez Cardona, Anderson Grajales, David Camilo López-Valenzuela, Wilmer Martinez-Rivera, Nicolás Martínez-Cortés, Rocío Clara Alexandra Mora-Quiñones, Sara Naranjo-Saldarriaga, Antonio Orozco, Daniel Parra-Amado, Julián Pérez-Amaya, José Pulido, Karen L. Pulido-Mahecha, Carolina Ramírez-Rodríguez, Sergio Restrepo Ángel, José Vicente Romero-Chamorro, Nicol Valeria Rodríguez-Rodríguez, Norberto Rodríguez-Niño, Diego Hernán Rodríguez-Hernández, Carlos D. Rojas-Martínez, Johana Andrea Sanabria-Domínguez, Diego Vásquez-Escobar

The following is proven here: let W : X × C ? R, where X is convex, be a continuous and bounded function such that for each y?C, the function W (·,y) : X ? R is concave (resp. strongly concave; resp. Lipschitzian with constant M; resp. monotone; resp. strictly monotone) and let Y?C. If C is compact, then there exists a continuous extension of W, U : X × Y ? [infX×C W,supX×C W], such that for each y?Y, the function U(·,y) : X ? R is concave (resp. strongly concave; resp. Lipschitzian with constant My; resp. monotone; resp. strictly monotone).