Number:
1283
Published:
Classification JEL:
J61, J64, R12, R14
Keywords:
Matching Function, spatial spillovers, Spatial econometrics

The most recent
Andrea Sofía Otero-Cortés, Karina Acosta, Luis E. Arango, Danilo Aristizábal, Oscar Iván Ávila-Montealegre, Oscar Becerra, Cristina Fernández, Luz Adriana Flórez, Luis Armando Galvis-Aponte, Anderson Grajales, Catalina Granda, Franz Alonso Hamann-Salcedo, Juliana Jaramillo-Echeverri, Carlos Medina, Jesús Enrique Morales-Piñero, Alejandra Morales, Leonardo Fabio Morales, Juan José Ospina-Tejeiro, Christian Manuel Posso-Suárez, José Pulido, Mario Andrés Ramos-Veloza, Alejandro Sarasti-Sierra
John Sebastian Tobar-Cruz, Carlos Alberto Ruiz-Martínez
Ana María Iregui-Bohórquez, Ligia Alba Melo-Becerra, María Teresa Ramírez-Giraldo, Jorge Leonardo Rodríguez-Arenas
Abstract
Most macroeconomic labor literature on estimating matching functions does not consider spatial spillover effects. However, job search and vacancy-filling processes often involve neighboring locations, as local workers can search for and fill vacancies in nearby labor markets. We estimate a spatial spillover model using annual data for a middle-income country in Latin America. Our findings show that unemployment has a positive spatial spillover effect because an increase in the labor supply raises the probability of filling a vacancy. In contrast, vacancies have a negative spillover effect because local and neighboring vacancies compete to be filled by workers in both markets.